Fuzzy Numerical Schemes for Hyperbolic Differential Equations
نویسندگان
چکیده
The numerical solution of hyperbolic partial differential equations (PDEs) is an important topic in natural sciences and engineering. One of the main difficulties in the task stems from the need to employ several basic types of approximations that are blended in a nonlinear way. In this paper we show that fuzzy logic can be used to construct novel nonlinear blending functions. After introducing the setup, we show by numerical experiments that the fuzzy-based schemes outperform methods based on conventional blending functions. To the knowledge of the authors, this paper represents the first work where fuzzy logic is applied for the construction of simulation schemes for PDEs.
منابع مشابه
Numerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملNumerical Methods for Fuzzy Linear Partial Differential Equations under new Definition for Derivative
In this paper difference methods to solve "fuzzy partial differential equations" (FPDE) such as fuzzy hyperbolic and fuzzy parabolic equations are considered. The existence of the solution and stability of the method are examined in detail. Finally examples are presented to show that the Hausdorff distance between the exact solution and approximate solution tends to zero.
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملNumerical Solution of fuzzy differential equations of nth-order by Adams-Moulton method
In recent years, Fuzzy differential equations are very useful indifferent sciences such as physics, chemistry, biology and economy. It should be noted, that if the equations that appear to be uncertain, then take help of fuzzy logic at these equations. Considering that most of the time analytic solution of such equations and finding an exact solution has either high complexity or cannot be solv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009